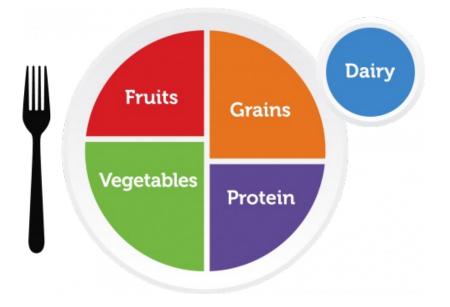
The microbes we eat (or should be eating)

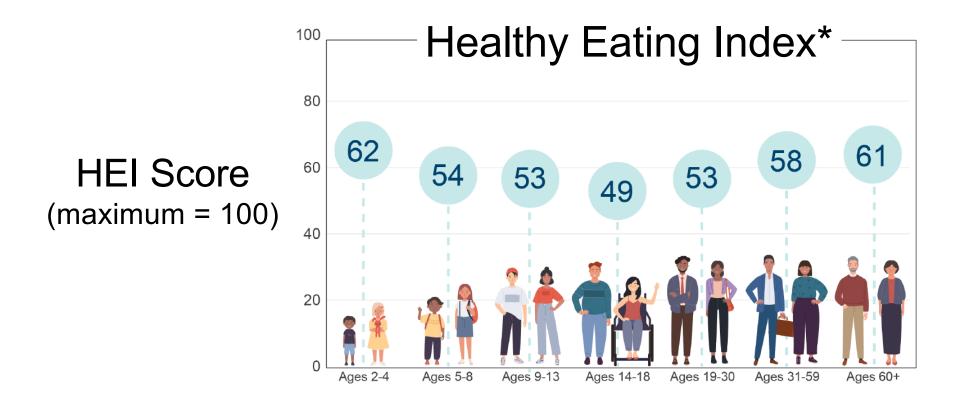
Bob Hutkins April 21, 2023

Nebraska Academy of Nutrition & Dietetics



Disclosures: Recipient of grants from food and supplement companies and founding partner of Synbiotic Health

What are Americans eating in 2023?



The Western Diet (what many, if not most Americans eat)

The American diet scores only **58%** based on nutrient quality

* From WWEIA/NHANES 2017-2018 and the *Dietary Guidelines* recommendations

The Bob Diet (what few Americans eat)

Yogurt with Granola for Breakfast

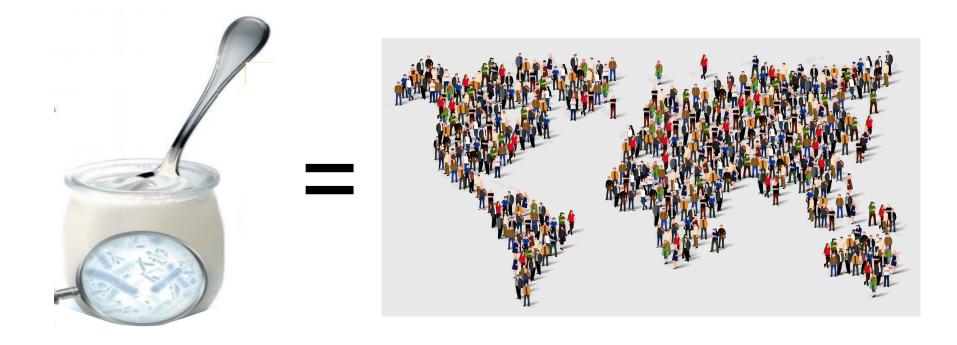
Salad for Lunch

Fresh Fruit for Snack

Tempeh Reuben For Dinner Apart from sugar, fat, salt, calories, and other macro- and micro-nutrients, what's the main difference between these diets?

The importance of live microbes in the human diet

- 1. What is the rationale for eating live microbes?
- 2. If so, which foods are good sources?
- 3. Does is matter <u>which</u> microbes we eat (i.e., is one microbe just as good as another?)
- 4. What is the evidence to support the hypothesis?


It's a microbial world

"If you don't like bacteria, you're on the wrong planet. This is the planet of the bacteria"

Craig Venter, American geneticist, as reported in a Los Angeles Times interview, November 2007.

Indeed, there are as many live bacteria in a cup of yogurt as there are humans on the planet (ca. 8B)

The premise is simple: Consuming live microbes in foods may benefit human health

■ Biochemist August 2018 RDA for microbes – are you getting your daily dose?

Colin Hill University College Cork, Ireland ... in addition to RDAs for nutrients and vitamins, dietary guidelines should also advise consumers to include **safe** microbes in their diets ... by recommending increased **consumption of fermented foods**"

Goals of the Live Microbe Panel

- 1. Estimate consumption of foods containing live microbes
- 2. Model consumption with disease risk.

Maria Marco University of California Davis University College Cork

Joanne Slavin University of Minnesota

Dan Merenstein Georgetown University

Victor Fulgoni III Nutrition Impact

Dan Tancredi University of California Davis

Chris Cifelli National Dairy Council

Mary Ellen Sanders ISAPP

Bob Hutkins University of Nebraska

Jaime Gahche

Rationale, justification, and planning

Results, Part 1. Consumption of live dietary microbes The Journal of Nutrition

December 2020

Should There Be a Recommended Daily Intake of Microbes?

Maria Marco, Colin Hill, Robert Hutkins, Joanne Slavin, Daniel Tancredi, Daniel Merenstein, Mary E Sanders

The Journal of Nutrition Nutritional Epidemiology

July 2022

A Classification System for Defining and Estimating Dietary Intake of Live Microbes in US Adults and Children

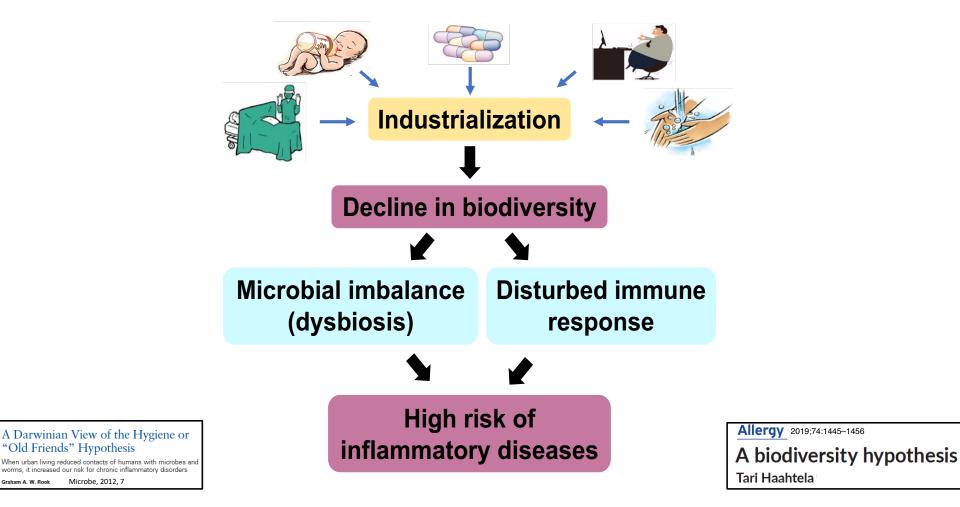
Maria Marco, Robert Hutkins, Colin Hill, Victor L Fulgoni, III, Christopher Cifelli, Jaime Gahche, Joanne Slavin, Daniel Merenstein, Daniel Tancredi, Mary E Sanders

1. Why should we be eating live microbes?

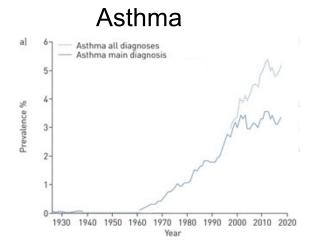
The New England cine licine

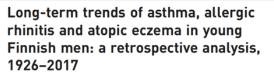
The New England Journal of Medicine *Editorials*

Hatingraint-omovingstona farm are Ases Heoretical Mathematical Pathematical Ses Diseases

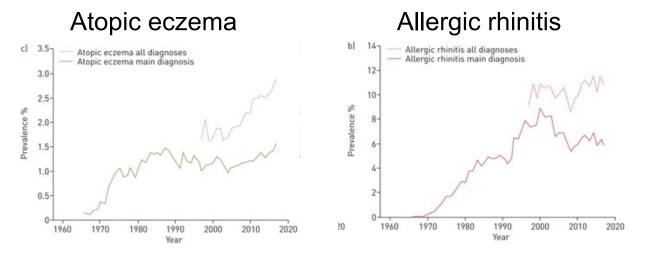

However, supplementation with Lactobacillus, a dog in the home, attendance at day care are factors that protect against development of allergies"

By Kate Murphy

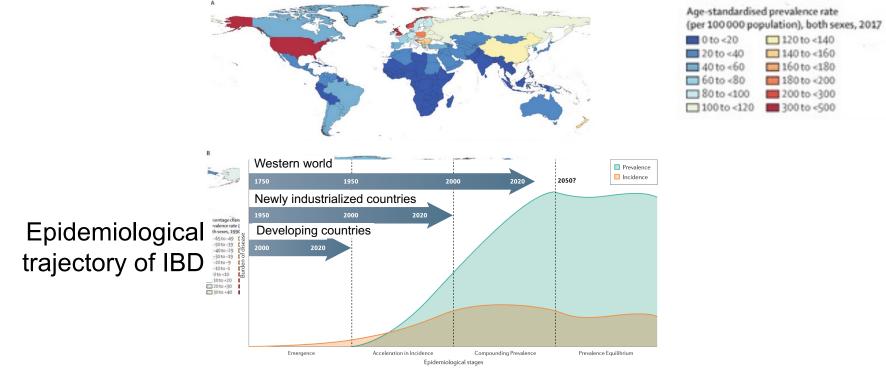

May 9, 2015


Old Friends Hypothesis (aka the **Biodiversity Hypothesis**)

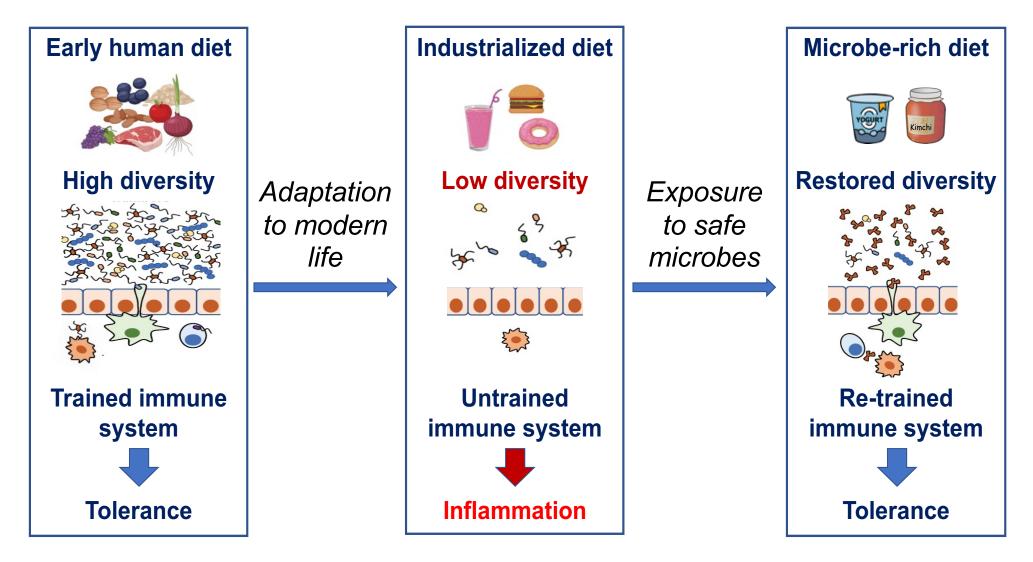
Graham A. W. Rook


Prevalence of allergic diseases in Finnish men: From non-existent in 1960 to major health burden

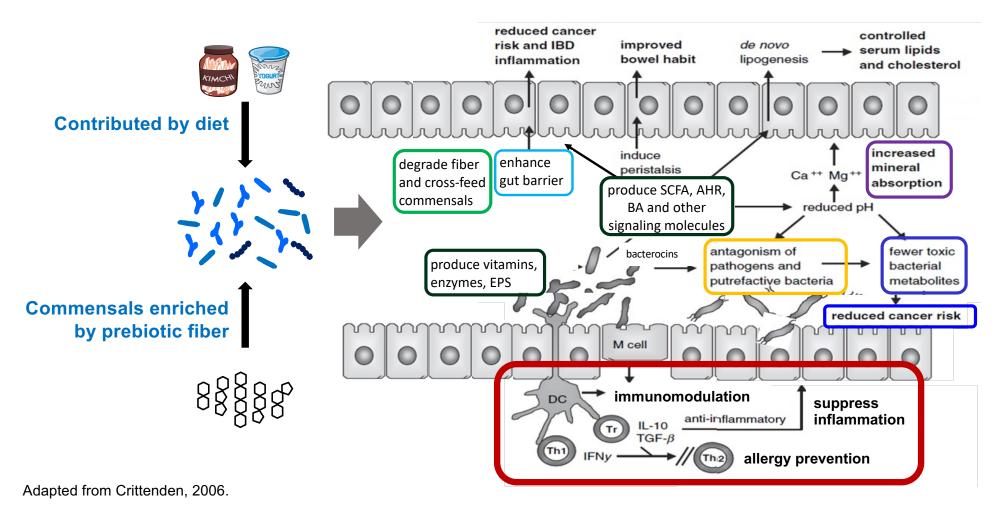
Jere Reijula^1.², Jari Latvala³, Mika Mäkelä⁴, Simo Siitonen⁵, Mari Saario⁵ and Tari Haahtela⁴


Eur Respir J 2020; 56: 1902144

"The changes in environment and lifestyle, affecting microbial exposure and immune regulation, seem to play a major role in the socalled post-war allergy epidemic"


Global incidence of Inflammatory Bowel Diseases (IBDs)

Prevalence rate (per 100,000 population) of IBD in 2017


"... risk factors include urbanisation, hygienic environments, and diets low in dietary fibre ..."

Lancet Gastroenterol. Hepatol, 2020, 5, 17-30 and Nature Rev Gastroenterol Hepatol 2021, 18, 56-66

Adapted from Marco et al., 2020

The role of beneficial live microbes in the gut

First a caveat: Industrialization has plenty of positives

- Prior to pasteurization, raw milk (among other foods) carried *M. tuberculosis, Salmonella*, and other pathogens
- Food processing made foods safe, with enhanced shelf-life and year-round availability.
- Nonetheless, many dietary microbes have been lost due to processing and improved hygiene, reducing microbial diversity

1. Why should we be eating live microbes?

2. If so, which foods are good sources?

What food consumption data base to use?

National Health and Nutrition Examination Survey

- Cross-sectional survey of adults and children for diet, exercise, and health status
- Large number of participants (> 70,000)
- Data is based on 24-hour recall, collected every other year.
- Using NHANES data, it is possible to correlate food consumption to health status

Step 1. Estimating live microbes in foods

- The NHANES database has **9,388** food codes for individual products
- These were divided roughly in half among two teams of experts (two per team)
- Each team ranked each product for microbe content where:

```
Low < 10^4 CFU/g
Medium = 10^4 - 10^7 CFU/g
High > 10^7 CFU/g
```

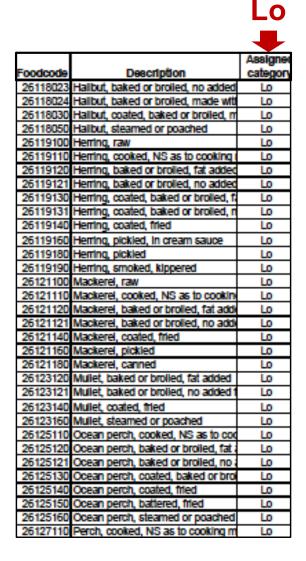
Arbitrary categories, but it was not possible to be more precise

- Experts worked independently, reconciling differences when needed
- Experts relied on published literature, including primary studies and reviews

Lots and lots of foods to assess mostly Lo

		Assigned
Foodcode	Description	category
58106705	Pizza with meat and vegetables, fro	LO
58106710	Pizza with meat and vegetables, NS	LO
58106720	Pizza with meat and vegetables, fro	D
58106725	Pizza with meat and vegetables, fro	LO
58106730	Pizza with meat and vegetables, fro	ما
58106733	Pizza with extra meat and extra veo	D
58106734	Pizza with extra meat and extra vec	2
58106735	Pizza with extra meat and extra vec	D
58106736	Pizza with extra meat and extra veg	LO
58106737	Pizza with extra meat and extra veg	LO
58106738	Pizza with extra meat and extra veg	LO
58106740	Pizza with meat and fruit, NS as to	LO
58106750	Pizza with meat and fruit, thin crust	LO
58106755	Pizza with meat and fruit, medium of	LO
	Pizza with meat and fruit, thick crus	LO
58106780	Pizza with meat and vegetables, pr	LO
58106820	Pizza with beans and vegetables, th	LO
58106830	Pizza with beans and vegetables, th	LO
58106910	Pizza with seafood, thin crust	LO
58106915	Pizza with seafood, requiar crust	LO
58106920	Pizza with seafood, thick crust	LO
58107030	Pizza, no cheese, NS as to type of	LO
58107050	Pizza, no cheese, thin crust	LO
58107060	Pizza, no cheese, regular crust	LO
58107100	Pizza, no cheese, thick crust	LO
	White pizza, cheese, thin crust	LO
58107210		LO
58107212		LO
58107220	White pizza, thin crust	LO
58107222	White pizza, cheese, with meat, thi	LO
58107224	White pizza, cheese, with meat, this	LO
58107225		Lo
58107230	White pizza, thick crust	LO

		Assigned
Foodcode		category
63201800	Blackberries, frozen, sweetened, N	5
	Bluberries, canned	LO
	Blueberries, cooked or canned, uns	LO
	Blueberries, cooked or canned, in h	Lo
	Blueberry pie filling	LO
	Cranberries, NS as to raw, cooked,	5
63207110	Cranberry sauce	5
	Raspberries, cooked or canned, NS	LO
	Raspberries, cooked or canned, un	5
	Raspberries, cooked or canned, in	Ь
63223110	Strawberries, canned	LO
63223120	Strawberries, cooked or canned, ur	LO
63223130	Strawberries, cooked or canned, in	LO
63301010	Ambrosia	LO
	Cranberry-orange relish, uncooked	LO
	Cranberry-raspberry Sauce	LO
63311110	Fruit cocktall, canned, NFS	LO
	Fruit cocktail, cooked or canned, un	LO
	Fruit cocktail, cooked or canned, in	LO
	Fruit cocktail, canned, in syrup	LO
	Tropical fruit cocktall, cooked or ca	Ь
	Fruit cocktail, cooked or canned, dr	LO
	Fruit cocktail, canned, juice pack	LO
	Apple, candled	LO
	Fruit, chocolate covered	Lo
	Banana, chocolate-covered with nu	5
	Fried dwarf banana, Puerto Rican s	D
63402990	Fruit salad, including citrus fruits, w	LO
	Fruit salad, excluding ctrus fruits, v	5
	Fruit dessert with cream and/or pud	5
	Guacamole with tomatoes	5
63408200	Guacamole with tomatoes and chill	5
63409010	Guacamole, NFS	LO


		Assigned
Foodcode	Description	category
	Uma beans, dry, cooked, fat not ad	Lo
	Pink beans, dry, cooked, NS as to f	Lo
	Pink beans, dry, cooked, fat not ad	Lo
41103070	Pink beans, cooked	Lo
41103090	Pink beans, canned, drained, fat ad	Lo
	Pink beans, canned, drained, fat no	Lo
	Pinto beans, NFS	Lo
	Pinto, calico, or red Mexican beans	Lo
	Pinto beans, from dried, fat added	Lo
	Pinto, calico, or red Mexican beans	Lo
41104012	Pinto, calico, or red Mexican beans	Ь
	Pinto, calico, or red Mexican beans	Lo
	Pinto beans, from dried, no added t	Lo
41104030	Pinto, calico, or red Mexican beans	Lo
	Pinto beans, from canned, fat adde	Lo
41104050	Pinto, calico, or red Mexican beans	Lo
41104060	Pinto, calico, or red Mexican beans	Lo
41104080	Pinto beans, from canned, no adde	6
	Pinto beans, from canned, reduced	Lo
41104120	Pinto, calico, or red Mexican beans	ما
41104200	Pinto beans, from fast food / restau	5
41104250	Pinto beans with meat	Lo
41105990	Kidney beans, NFS	Lo
41106000	Red kidney beans, dry, cooked, NS	Ь
	Kidney beans, from dried, fat added	Lo
	Red kidney beans, dry, cooked, ma	Lo
	Red kidney beans, dry, cooked, ma	Lo
	Red kidney beans, dry, cooked, ma	Lo
41106020	Kidney beans, from dried, no addeo	Lo
41106040	Kidney beans, from canned, fat add	Lo
41106050	Red kidney beans, canned, drained	Lo
41106080	Kidney beans, from canned, no add	Lo
41106100	Red kidney beans, canned, drained	LO
	Kidney beans, from canned, reduce	LO

LO

		Assigned
Foodcode	Description	category
11100000	Milk, NFS	5
	Milk, whole	Lo
11111100	Milk, low sodium, whole	Lo
11111150	Milk, calcium fortified, whole	LO
11111160	Milk, calcium fortified, low fat (1%)	5
11111170	Milk, calcium fortified, fat free (skim	D
11112000	Milk, cow's, fluid, other than whole,	LO
	Milk, reduced fat (2%)	Lo
	Milk, low fat (1%)	Lo
11113000	Milk, fat free (skim)	Lo
11114300	Milk, lactose free, low fat (1%)	LO
11114320	Milk, lactose free, fat free (skim)	LO
11114330	Milk, lactose free, reduced fat (2%)	LO
11114350	Milk, lactose free, whole	LO
11116000	Goat's milk, whole	Ь
11120000	Milk, dry, reconstituted, NS as to fa	LO
	Milk, dry, reconstituted, whole	LO
	Milk, dry, reconstituted, low fat (1%	LO
	Milk, dry, reconstituted, fat free (ski	Lo
	Milk, evaporated, NS as to fat conte	
	Milk, evaporated, NS as to fat conte	
11210100	Milk, evaporated, NS as to fat conte	D
11211000	Milk, evaporated, whole, NS as to d	Lo
11211050		D
11211100	Milk, evaporated, whole, undiluted	Lo
11211200	Milk, evaporated, whole, diluted	Lo
11211400	Milk, evaporated, reduced fat (2%)	Lo
11212000	Milk, evaporated, skim, NS as to di	LO
	Milk, evaporated, fat free (skim)	LO
	Milk, evaporated, skim, undiluted	LO
	Milk, condensed, sweetened	D
	Milk, condensed, sweetened, undilu	D

		Assigned
Foodcode	Description	category
21304000	Beef, shortribs, cooked, NS as to fa	Ь
	Beef, shortribs, cooked, lean and fa	Ь
	Beef, shortribs, cooked, lean only e	Lo
21304200	Beef, shortribs, barbecued, with sa	Ь
21304210	Beef, shortribs, barbecued, with sa	Lo
21304220	Beef, shortribs, barbecued, with sa	Lo
21305000	Beef, cow head, cooked	Lo
21401000	Beef, roast, roasted, NS as to fat ea	Lo
21401110	Beef, roast, roasted, lean and fat ea	Lo
21401120	Beef, roast, roasted, lean only eater	Lo
21401400	Beef, roast, canned	٥
21407000		LO
	Beef, pot roast, braised or bolled, le	Lo
	Beef, pot roast, braised or bolled, le	Lo
	Beef, stew meat, cooked, NS as to	Lo
	Beef, stew meat, cooked, lean and	Lo
	Beef, stew meat, cooked, lean only	Lo
	Corned beef, cooked, NS as to fat (Lo
	Corned beef, cooked, lean and fat e	Lo
	Corned beef, cooked, lean only eat	Lo
	Corned beef, canned, ready-to-eat	LO
	Beef brisket, cooked, NS as to fat e	٥
	Beef brisket, cooked, lean and fat e	٥
	Beef brisket, cooked, lean only eate	٥
	Beef, sandwich steak, flaked, forme	Lo
	Ground beef, cooked	Lo
	Ground beef, meatballs, meat only,	Lo
21500200	Ground beef or patty, breaded, coo	Lo
21500300	Ground beef patty, cooked (for fast	Lo
	Ground beef patty, cooked	Lo
21501000	Ground beef, less than 80% lean, c	Lo
21501200	Ground beef, 80% - 84% lean, cool	Lo
21501300	Ground beef, 85% - 89% lean, cool	٥

LO

Med

		Assigned
Foodcode	Description	category
63123020	Grapes, American type, slip skin, ra	Med
63125010	Guava, raw	Med
63129020	Mango, pickled	Med
	Nectarine, raw	Med
	Peach, raw	Med
63135610	Peach, frozen, NS as to added swe	Med
63135620	Peach, frozen	Med
63135630	Peach, frozen, with sugar	Med
63137010	Pear, raw	Med
63137050	Pear, Aslan, raw	Med
63139010	Persimmon, raw	Med
63143010	Plum, raw	Med
63143650	Plum, pickled	Med
63200100	Berries, NFS	Med
63200200	Berries, frozen, NFS	Med
63201010	Blackberries, raw	Med
63201600	Blackberries, frozen	Med
63203010	Blueberries, raw	Med
63203550	Blueberries, frozen, sweetened	Med
63203570	Blueberries, frozen, NS as to sweet	Med
63203600	Blueberries, frozen	Med
63205010	Boysenberries, raw	Med
63205600	Boysenberries, frozen	Med
63207010	Cranberries, raw	Med
63214000	Huckleberries, raw	Med
63215010	Loganberries, raw	Med
63217010	Mulberries, raw	Med
63219000	Raspberries, raw	Med
63219020	Raspberries, red, raw	Med
	Raspberries, frozen, NS as to adde	Med
63219610	Raspberries, frozen	Med
63219620	Raspberries, frozen, with sugar	Med
63223020	Strawberries, raw	Med

		Assigned
Foodcode	Description	category
75107000	Cauliflower, raw	Med
	Celery, raw	Med
	Fennel bulb, raw	Med
75109400	Basil, raw	Med
75109500	Chives, raw	Med
	Cilantro, raw	Med
75109600	Com, raw	Med
	Cucumber, raw	Med
75111200	Eggplant, raw	Med
75111800	Jicama, raw	Med
75112000	Kohirabi, raw	Med
	Leek, raw	Med
75113000	Lettuce, raw	Med
75113060	Lettuce, Boston, raw	Med
75113080	Lettuce, aruquía, raw	Med
75114000	Mixed salad greens, raw	Med
	Mushrooms, raw	Med
75117010	Onions, green, raw	Med
	Onions, raw	Med
	Parsley, raw	Med
	Green peas, raw	Med
	Pepper, hot chill, raw	Med
	Pepper, poblano, raw	Med
	Pepper, Serrano, raw	Med
	Pepper, raw, NFS	Med
	Pepper, sweet, green, raw	Med
	Pepper, sweet, red, raw	Med
	Pepper, banana, raw	Med
	Radish, raw	Med
	Rutabaga, raw	Med
	Seaweed, raw	Med
	Snowpeas, raw	Med
75128000	Summer squash, yellow, raw	Med

Med

		Assigned
Foodcode	Description	category
11435020	Yogurt, Greek, low fat milk, flavors	I
11435030	Yogurt, Greek, nonrat milk, flavors (I
11435100	Yogurt, Greek, with oats	H
	Yogurt, liquid	н
	Chipotie dip, yogurt based	н
	Dill dip, yogurt based	I
	Ranch dip, yogurt based	I
11440050	Spinach dip, yogurt based	I
	Tzatziki dip	I
11440070	Vegetable dip, yogurt based	H
11445000	Yogurt, fruit and nuts, lowfat milk	H
11446000	Yogurt partait, low fat, with fruit	I
11480010	Yogurt, whole milk, baby food	H
11480020	Yogurt, whole milk, baby food, with	н
11480040	Yogurt, whole milk, baby food, with	Η
12310100	Sour cream, regular	н
12310300	Sour cream, reduced fat	Η
	Sour cream, light	I
	Sour cream, fat free	I
	Sour cream, Imitation	I
	Cheese, NFS	I
14100100	Cheese, natural, NFS	I
14101010	Cheese, Blue or Roquefort	I
	Cheese, Brick	н
14103010	Cheese, Carnembert	H
14103020	Cheese, Brie	H
14104100	Cheese, Cheddar	H
	Cheese, Cheddar, reduced fat	н
	Cheese, Cheddar, nonfat or fat free	Н
	Cheese, Colby	H
	Cheese, Colby Jack	H
14104400	Cheese, Feta	H
14104600	Cheese, Fontina	H
14104700	Cheese, goat	H

Results: Estimates of live microbes in 9,388 foods

Low: $<10^4$ CFU/g

Processed/heated foods

8,998 (96%)

Medium: $10^4 - 10^7$ CFU/g

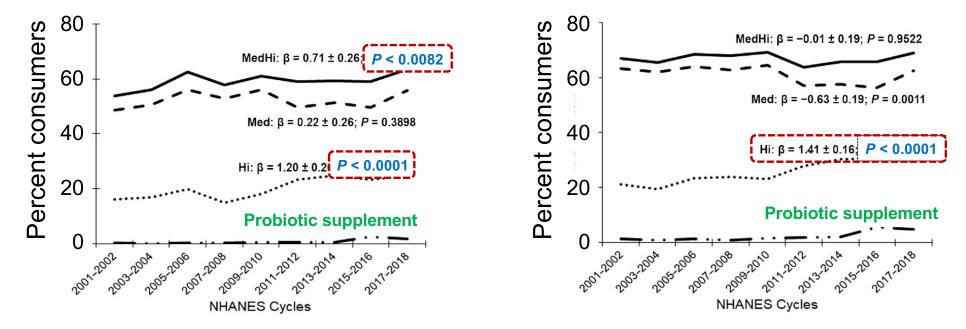
Fresh fruits and vegetables

284 (3%)

High: $>10^7$ CFU/g

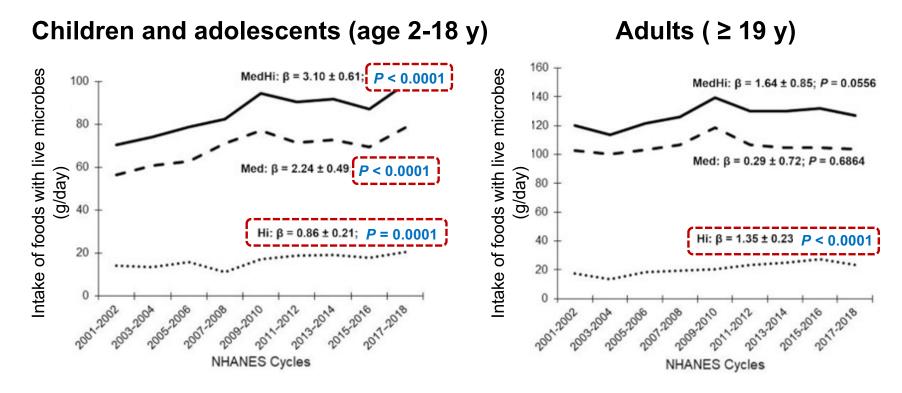
Unheated fermented foods

106 (1%)



Observation #1. About 2/3 of the population are consumers of microbe-containing foods (**but 1/3 are not**)

Note, probiotic supplement consumption is less than 3%


Adults (\geq 19 y)

Children and adolescents (age 2-18 y)

Marco et al., J Nutrition 2022, 152, 7, 1729–1736

Observation #2. We eat 90 g/day (children and adolescents) to 120 g/day (adults) of microbe-containing foods Note, that's < 25% of the total amount of food consumed/day</p>

Marco et al., J Nutrition 2022, 152, 7, 1729–1736

Observation #3. Consumers of live microbe foods consume more than **10⁸ (100 million) microbes/day**

Most (>90%) are from fermented foods

		Percent	Consumption	Live microbes
Age, y	n	consumers	(g/day)	(CFU/day)
2 - 8	11,626	63	89	> 2.7 x 10 ⁸
♦ 9 - 18	16,749	56	83	> 2.0 x 10 ⁸
19 - 50	25,071	65	119	> 2.9 x 10 ⁸
 → ≥ 51	21,020	70	139	> 2.9 x 10 ⁸

Per capita consumption of live-microbe foods*

* In the MedHi aggregated category

Marco et al., J Nutrition 2022, 152, 7, 1729-1736

Comparing our results with other values in the literature

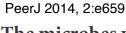
Trends in Microbiology June 2015, 23

Fate, activity, and impact of ingested bacteria within the human gut microbiota

Muriel Derrien and Johan E.T. van Hylckama Vlieg

estimated

"orally ingested strains from fermented foods and probiotics ranges between **10⁸ and 10¹²** CFU per day."


International Journal of Food Microbiology 2015, 213, 139 Maintaining gut ecosystems for health: Are transitory food bugs stowaways or part of the crew?

Coline Plé, Jérôme Breton, Catherine Daniel, Benoît Foligné *

estimated

"Transient microorganisms, provided mostly through food, can reach **10**¹⁰ **to 10**¹¹ *viable bacteria ingested per day,*

calculated

The microbes we eat: abundance and taxonomy of microbes consumed in a day's worth of meals for three diet types

Jenna M. Lang¹, Jonathan A. Eisen² and Angela M. Zivkovic^{3,4}

The **typical American diet** provides only **10⁶ CFU per day**: the "USDA" diet plan provides **10⁹ CFU per day**

Ultimately, the number and types of microbes we consume depends on diet and provenance

Product	Country	Per capita consumption (kg/person/year)	Daily consumption	Microbes consumed/day (est.)
yogurt	Netherlands	36	100 g	10 ¹⁰⁻¹¹
cheese	France	27	75 g	10 ⁸⁻⁹
olives	Albania	11	30 g	10 ⁸⁻⁹
fermented meats	Germany	5	14 g	10 ⁷⁻⁸
kimchi	Korea	35	96 g	10 ⁹⁻¹⁰
miso	Japan	5	14 g	10 ⁷⁻⁸

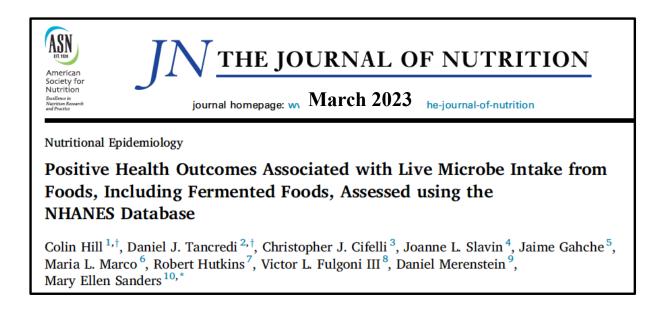
Rezac, Kok et al., 2018, Front. Microbiol. 9, 1785

Thus, the "high microbe" diet (e.g., a Bob-type diet) could deliver more than 10 billion microbes

Food	Live microbes
Yogurt 120 g @ 10 ⁸ CFU/g	10 ¹⁰ CFU
Salad, 150 g @ 10 ⁶ CFU/g	10 ⁸ CFU
Fresh fruit, 150 g @ 10 ⁶ CFU/g	10 ⁸ CFU
Reuben w/50 g sauerkraut @ 10 ⁸ CFU/g	10 ⁹ CFU
Daily amount consumed:	> 10 ¹⁰ CFU

Can microbe-rich diets affect human health?

National Health and Nutrition Examination Survey



- Cross-sectional survey of US adults and children
- Large number of participants (> 70,000)
- Data is based on 24-hour recall
- Using NHANES data, it's possible to correlate food consumption to health status
- The survey also includes interviews, physical exams, and health assessment data

Diseases and health indicators:

- Anemia
- Cardiovascular disease
- Diabetes
- Environmental exposures
- Eye diseases
- Hearing loss
- Infectious diseases
- Kidney disease
- Nutrition
- Obesity
- Oral health
- Osteoporosis
- Physical fitness
- Reproductive history
- Respiratory disease
- Sexually transmitted diseases
- Vision

Conclusions: To our knowledge, this study is the first to quantify, in a nationally representative data set of American adults ... associations of dietary intakes of live microbes with a variety of outcomes.... **Our findings suggest that foods** with higher microbial concentrations are associated with modest health improvements across a range of outcomes.

Statistical Analysis

(Developed and implemented by Prof. Dan Tancredi, UC Davis, and Dr. Vic Fulgoni, Nutrition Impact, LLC)

Regression analyses were used to assess the relationship between consumption of foods with live microbes with physiological parameters.

Two covariate sets were utilized for each analysis:

Covariate set 1 included age, gender, ethnicity, physical activity, poverty income ratio, smoking status, and alcohol intake.

Covariate set 2 was the same but also included the anthropometric variables (BMI, waist circumference, and weight), switching them from being outcomes to being covariates

Adjusted associations of dietary intake (**per 100 g**) of **foods with medium or high** microbial concentrations with physiological parameters in adults

Outcome	N	Regression Coefficient (95% CI)	p-value
BP diastolic (mean rdg mm hg)	40,898	-0.131 (-0.228, -0.034)	0.009
BP systolic (mean rdg mm hg)	41,077	-0.405 (-0.523, -0.287)	<0.001
Body Mass Index (kg/m**2)	41,697	-0.217 (-0.273, -0.160)	<0.001
C-reactive protein (mg/dL)	31,439	-0.017 (-0.023, -0.012)	<0.001
Glucose, plasma (mg/dL)	18,509	-0.535 (-0.780, -0.291)	<0.001
HDL-cholesterol (mg/dL)	40,313	0.578 (0.425, 0.732)	<0.001
Insulin (uU/mL)	18,163	-0.428 (-0.563, -0.294)	<0.001
Triglyceride (mg/dL)	18,327	-2.068 (-3.374, -0.762)	0.002
Waist Circumference (cm)	40,804	-0.554 (-0.679, -0.428)	<0.001
Weight (kg)	41,847	-0.440 (-0.604, -0.275)	<0.001

Hill, Tancredi, et al, 2023. Results adjusted for covariate set 1.

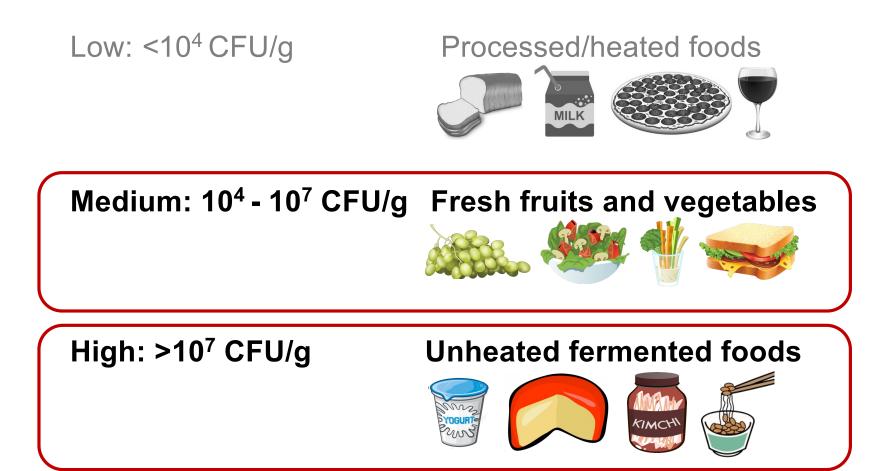
Adjusted associations of dietary intake (per 100 g) of fermented foods with with physiological parameters in adults

Outcome	N	Regression Coefficient (95% CI)	p-value
BP systolic (mean rdg mm hg)	41,077	-0.768 (-1.136, -0.399)	<0.001
Body Mass Index (kg/m**2)	41,697	-0.309 (-0.465, -0.154)	<0.001
HDL-cholesterol (mg/dL)	40,313	0.696 (0.294, 1.098)	<0.001
Insulin (uU/mL)	18,163	-0.644 (-0.995 <i>,</i> -0.292)	<0.001
Triglyceride (mg/dL)	18,327	-4.844 (-7.674, -2.014)	<0.001
Waist Circumference (cm)	40,804	-0.793 (-1.166, -0.421)	<0.001
Weight (kg)	41,847	-0.621 (-1.156, -0.087)	0.023

Hill, Tancredi, et al, 2023. Results adjusted for covariate set 1.

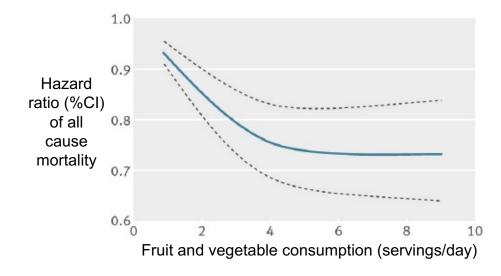
Main outcomes and caveats

- Consumption of foods that contain high levels of live microbes is associated with a range of improved health benefits
- Health benefits can be achieved by modest changes in diet, i.e., adding servings of yogurt and fresh fruits and vegetables
- Many live microbe foods are also good sources of vitamins, minerals, fibers, phytochemicals, and other nutrients
- This study does not prove causality, RCTs are needed


Nutrients, Han and Wang, 2022 Association of Dietary Live Microbe Intake with Cardiovascular Disease in US Adults: A Cross-Sectional Study of NHANES 2007-2018

Main Result:

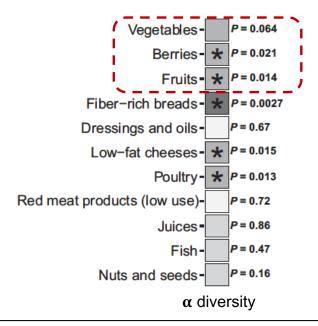
High dietary live microbe intake was associated with reduced prevalence of stroke and heart attack.


Group	OR(95%CI) P for trend
Angina	0.39
Low group	1
Medium group	0.95(0.65,1.38)
High group	0.85(0.58,1.25)
Coronary heart disease	0.58
Low group	1
Medium group	1.12(0.77,1.64)
High group	1.11(0.75,1.66)
Stroke	0.01
Low group	1
Medium group	0.66(0.47,0.93)
High group	0.62(0.43,0.91)
Congestive heart failure	0.36
Low group	1
Medium group	0.91(0.63,1.31)
High group	0.83(0.56,1.25)
Heart attack	0.01
Low group	1
Medium group	0.81(0.60,1.10)
High group	0.63(0.43,0.91)
0.4 0.8	1.2 1.6
Adjusted or	Ids ratios

Reminder: Which foods contained live microbes?

News Flash: Fruits and vegetables are good for health

More fruits and vegetable are consumed, the longer you live



BMJ 2014;349:g4490

Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies

Xia Wang, Yingying Ouyang, Jun Liu, Minmin Zhu, Gang Zhao, Wei Bao, Frank B Hu

Diets rich in fruits and vegetables also increase microbial diversity

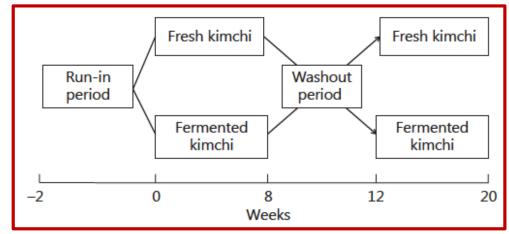
Am J Clin Nutr 2021;114:605–616

Associations of healthy food choices with gut microbiota profiles

Kari K Koponen,^{1,2} Aaro Salosensaari,^{3,4} Matti O Ruuskanen,^{2,5} Aki S Havulinna,^{2,6} Satu Männistö,² Pekka Jousilahti,² Joonatan Palmu,^{2,3,5} Rodolfo Salido,⁷ Karenina Sanders,⁷ Caitriona Brennan,⁷ Gregory C Humphrey,⁷ Jon G Sanders,^{7,8} Guillaume Meric,^{9,10} Susan Cheng,^{11,12,13} Michael Inouye,^{10,14} Mohit Jain,¹⁵ Teemu J Niiranen,^{2,3,5} Liisa M Valsta,² Rob Knight,⁷ and Veikko V Salomaa²

Outstanding challenges to address

1. How to distinguish between the contribution of live microbes versus those nutrients ordinarily present in the food matrix?


Fresh fruits and vegetables (Medium: 10⁴ - 10⁷ CFU/g)

- These foods are rich sources of vitamins, minerals, protein, and fiber, and their consumption is associated with positive health outcomes.
- How to assess health benefits derived from the live microbes?

Designing RCTs with suitable controls:

Directly compare **fermented** foods to **non- fermented** versions (or heat processed)

Mol. Nutr. Food Res. 2015, 59, 1004–1008

Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women

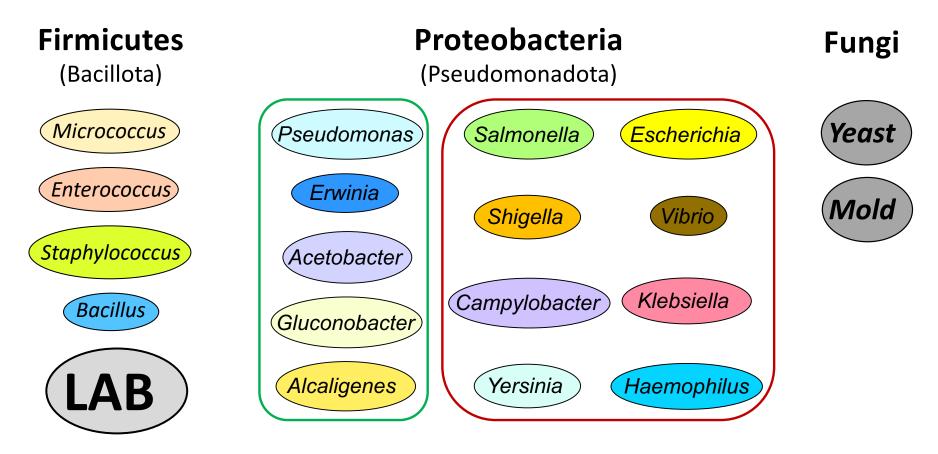
Kyungsun Han¹, Shambhunath Bose², Jing-hua Wang¹, Bong-Soo Kim³, Mi Jeong Kim⁴, Eun-Jung Kim⁵ and Hojun Kim¹

Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients

Eun Kyoung Kim^{a, 1}, So-Yeon An^{a, 1}, Min-Seok Lee^{a, 1}, Tae Ho Kim^b, Hye-Kyoung Lee^c, Won Sun Hwang^c, Sun Jung Choe^c, Tae-Young Kim^d, Seung Jin Han^a, Hae Jin Kim^a, Dae Jung Kim^a, Kwan-Woo Lee^{a,*} Nutrition Research 31 (2011) 436–443

Ann Nutr Metab 2013;63:111-119

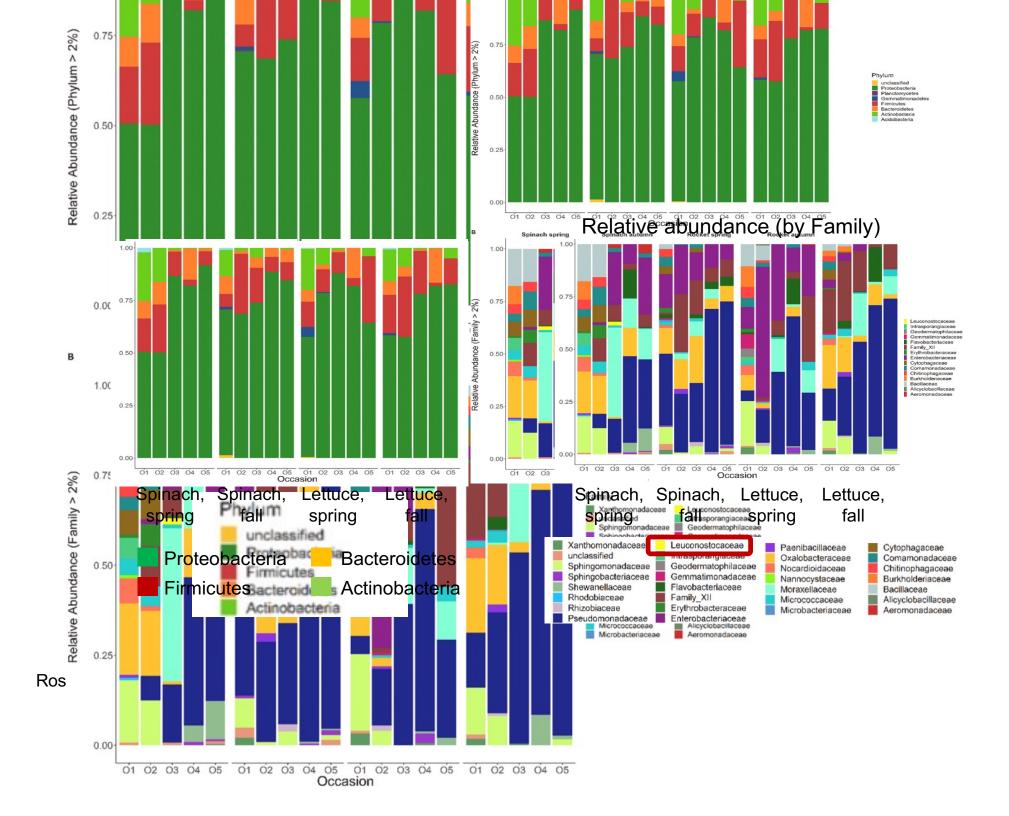
Beneficial Effects of Fresh and Fermented Kimchi in Prediabetic Individuals


So-Yeon An^a Min Suk Lee^a Ja Young Jeon^a Eun Suk Ha^a Tae Ho Kim^c Ja Young Yoon^b Chang-Ok Ok^b Hye-Kyoung Lee^b Won-Sun Hwang^b Sun Jung Choe^b Seung Jin Han^a Hae Jin Kim^a Dae Jung Kim^a Kwan-Woo Lee^a

Food Funct., 2018, 9, 5323–5335 Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation – a pilot study⁺

Elsa Sandberg Nielsen,^a Eirik Garnås,^a Kathrine Juul Jensen, [®]^a Lars Hestbjerg Hansen,^b Peder Sandvold Olsen,^c Christian Ritz, [®]^d Lukasz Krych [®]^a and Dennis Sandris Nielsen [®] *^a

- 1. Why should we be eating live microbes?
- 2. If so, which foods are good sources?
- 3. Does is matter which microbes we eat (i.e., is one microbe just as good as another?)


The microbes we eat Good, Bad, and Very Bad

		Aerobic Mes (CFU/		Psychro (CFL		LA (CFl	
	п	Range ^b	Mean ^b	Range ^b	Mean ^b	Range ^b	Mean ^b
Fresh-cut vegetables	236	4.3-8.9	7.0	4.3-8.9	7.0	<1.0-8.5	4.2
Arugula	5	6.7-8.0	7.5	5.7-8.2	7.3	3.0-5.9	4.0
Carrot	18	6.5-8.9	7.8	6.6-8.9	7.9	4.3-7.6	5.9
Corn salad	21	6.4-7.8	7.1	5.9-7.8	7.0	<1.0-4.0	2.2
Endive	21	4.3-7.2	6.2	4.3-7.1	6.1	<1.0-4.6	2.7
Lettuce	29	4.9-7.6	6.3	4.9-7.8	6.4	1.7-6.3	3.8
Spinach	10	6.2-8.0	7.4	6.1-8.1	7.4	3.7-6.9	5.1
Mixed salads	132	5.4-8.5	7.1	5.2-8.5	7.1	<1.0-8.5	4.5
Fresh-cut fruit	21	2.0-7.1	3.8	1.7-7.1	3.6	1.7 - 4.8	3.0
Sprouts	15	7.1-9.2	7.9	6.3-8.9	7.3	3.4-7.5	5.5
Whole vegetables	28	2.7-8.0	5.9	3.0-7.8	5.8	<1.0-3.3	1.6
Iceberg	5	3.3-5.9	4.6	3.2-5.9	4.6	<1.0-1.2	1.0
Lettuce hearts	3	2.7-5.3	4.4	3.0-5.2	4.4	<1.0-2.0	1.3
Oakleaf	5	5.8-8.0	6.7	5.8-7.8	6.6	<1.0-2.8	1.7
Trocadero	5	5.1-7.3	6.2	5.2-6.7	6.0	<1.0-3.3	1.9
Romaine	5	5.4-6.6	6.0	5.3-6.5	5.9	<1.0-1.9	1.2
Endive	5	6.7-7.2	7.0	6.2-7.2	6.8	1.7-2.7	2.2

Lactic acid bacteria are often out-numbered > 1000 to 1 in fresh vegetables

Abadias, M., et al., 2008. Int. J. Food Microbiol. 123, 121–129.

Spectrum 2023

Ready-To-Eat Rocket Salads as Potential Reservoir of Bacteria for the Human Microbiome

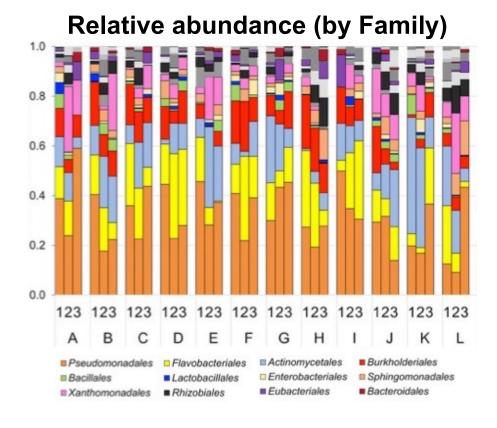
Giacomo Mantegazza^a, Giorgio Gargari^a, Robin Duncan^a, Fabio Consalez^a, Valentina Taverniti^a Patrizia Riso^b, Simone Guglielmetti 😰 ^a The live microbes in salad greens are typical phyllosphere-associated microbes (epiphytes)

123 123

D

С

Conventional


CFU/g

3

123 123

А

в

Live microbes by plate counting

123 123

G

Organic

н

E II F

123 123 123 123 123

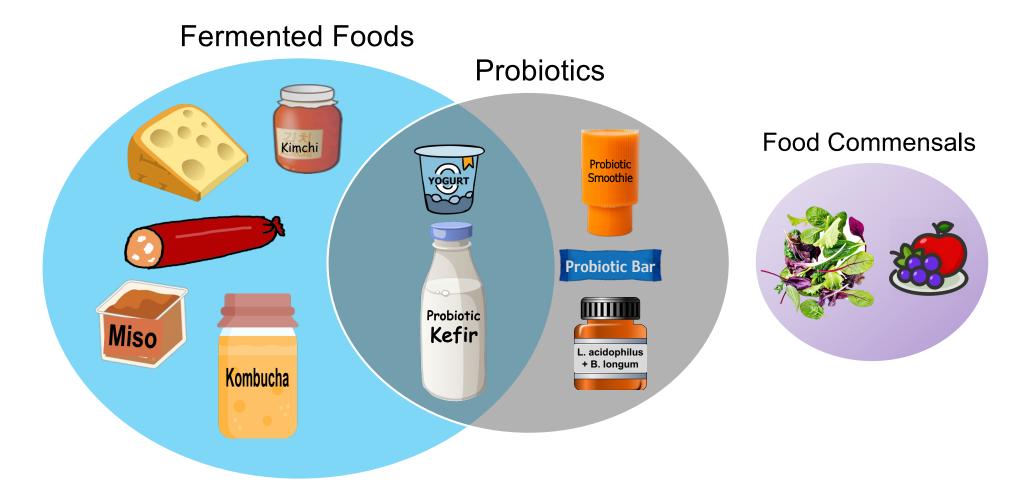
I II J

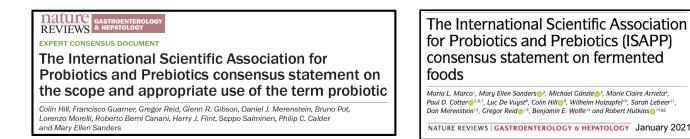
123

L

Unwashed

K II


Integrated


Role of the 'Medium' category microbes

- Salad greens contain about 10⁶ 10⁷ microbes/g
- Most are common plant-associated microbes
- Unclear if these live plant microbes influence gut health
- Indeed, many don't even make it into the GI tract

But this does not preclude an immunological impact

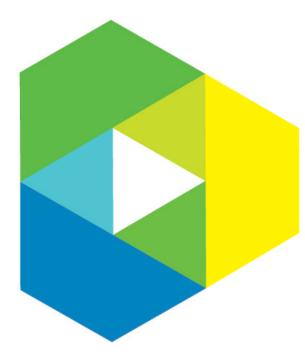
Sources of Live Dietary Microbes

Q. What is the difference between fermented foods and probiotics?

By definition, "the term 'probiotic' should only be used when there is a **demonstrated health benefit** on the host that is conferred by **well-defined and characterized live microbes.**"

In contrast, fermented foods often contain **uncharacterized, undefined** microbes, for which a health benefit has **not** been established

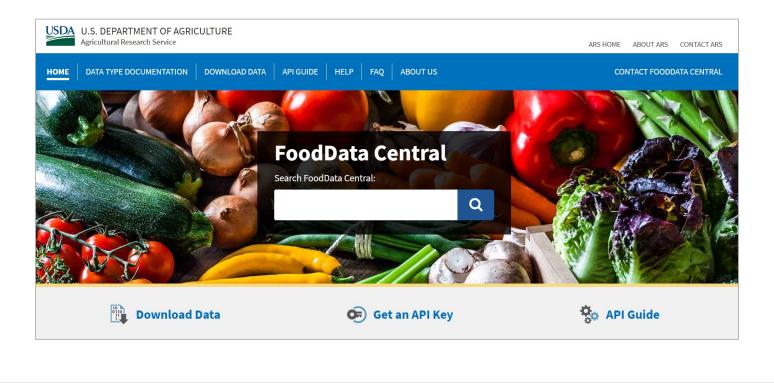
Fermented Foods \neq Probiotics


Implications

- Except for fermented foods, LABs are not numerically dominant in Med foods
- Indeed, the main microbes in non-fermented fresh foods include non-LAB firmicutes, proteobacteria, yeast and molds,
- Any potential role for these plant and environmental commensal microbes in human health is not clear and needs further study

Coming attractions and opportunities

- More RCTs are needed to address the role of live microbes on health
- Need to distinguish between nutrients and microbes
- Epidemiologic data can still be very useful. Remember that fiber recommendations were initially developed based on these studies
- Such studies can lead to consumer awareness of the benefits of live microbes as well as dietary recommendations for live microbe intake


Institute for the Advancement of Food and Nutrition Sciences

Live Microbes: A *New* USDA Global Branded Food Products Database Product Attribute

The Branded Foods Database is Part of USDA's FoodData Central

Location: fdc.nal.usda.gov

|--|

Live Microbe Fields are Now Available to Populate

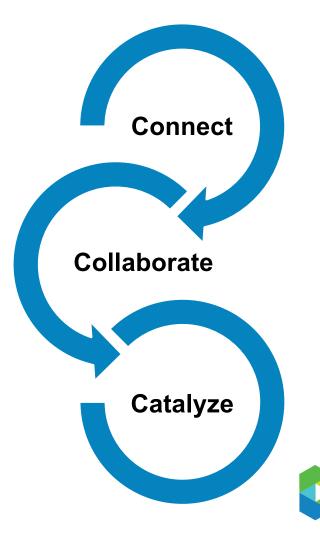
- Fields made available in October 2021
- The Partnership will be holding an instructional webinar in 4Q 2022 to address detailed questions – open to all.

Offers a non-competitive, objective, and transparent mechanism for stakeholders to understand live microbe intake and eventually link intake to health outcomes!

Entering data into FoodData Central

Live Microbes Attribute Inputs

- Total live microbes, minimum value (CFU/g)*
- Total live microbes, maximum value (CFU/g)*
- Live Microbes Method of Analysis
 - Aerobic plate count, flow cytometry, other
- Contains Microbes
 - Select all that apply from list*


ARS HOME > FOODDATA CENTRAL > FOOD SEARCH > YAKULT PROBIOTIC DRINK (BRANDED, 2319338)

Yakult Probiotic Drink

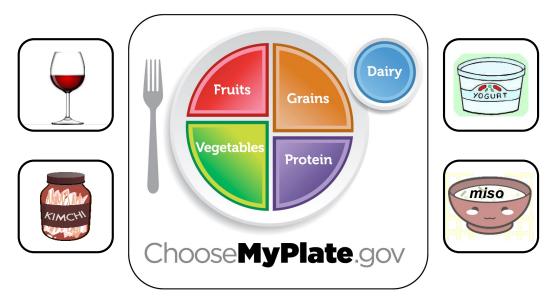
	n Alcoholic Beverages Ready to I	rink GI	PC Class	Code: 502	02300		Short De	escri
		ate: 5/31/202	2	Market Co	untry:	United	d States	
sed on the GS1 Global Data Synchronization N	etwork, Powered by 1WorldSync							
formation provided by food brand owners is la alues for an adult 2,000 calorie diet (21 CER 10)		onsible for des	cription	s, nutrient o	data ar	id ingre	dient inf	orma
action and date 2,000 catome dict (22 citer in								
lutriente Other Information								
	LACTICASEIBACILLUS_PARACA:	EI						
lutriente Other Information	LACTICASEIBACILLUS_PARACA	EI						

*Database submission instructions include thresholds to indicate for Min and Max values for those wanting to indicate a generic "High," "Medium," or "Low" number of live microbes in their products.

Institute for the Advancement of Food and Nutrition Sciences

- IAFNS advances food and nutrition science for public benefit - through collaboration
- Questions about the Gut Microbiome Committee, the Live Dietary Microbes Subcommittee or the USDA Database?

Contact: Marie Latulippe, mlatulippe@iafns.org



https://www.linkedin.com/company/ iafns-science

58

Maybe we're not far from the following:

"Fermented foods, including those that contain live microorganisms, should be included as part of a healthy diet"

Adapted from Hutkins 2021, Microbiology and Technology of Fermented Foods

Acknowledgements

Maria Marco University of California Davis University College Cork

Colin Hill

Victor Fulgoni III Nutrition Impact

Marie Latulippe **IAFNS**

Chris Cifelli National Dairy Council

Jaime Gahche NIH

Mary Ellen Sanders ISAPP

Joanne Slavin University of Minnesota

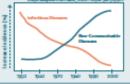
Dan Merenstein Georgetown University

Dan Tancredi University of California Davis

For millennia, humans ate raw fruits and vegetables and fermented foods that serve as rich and diverse sources of live dietary microbes. Today, our foods have often been processed in a manner that removes or kills most of these microbes. Is it possible that the high levels of some modern non-communicable diseases could be linked to our reduced exposure to live microbes in our diet?

What do we know about the value of consuming live dietary microbes?

- Fermented foods are thought to support gut health Fermented foods are associated with improved
- cardiovascular and metabolic health
- Problexics which are live microbes of many different species can improve some health
- parameters There remains much so learn
- How many live microbes should we consume for a health benefit?
- Are some microbes better than others for our health?
- What types of health benefits could we expect?


w many microbes dowe eat

- Is consuming live microbes safe?
- Many microbes are beneficial or simply pass through the consumer without
- an impact
- Some also cause food spoilage But some microbes can cause serio
- Elness such as Saim oveila or Compyibliscier - and these need to be
- Keep in mind that eatin certain undercooked or raw foods - such as milk, fish, meac- can pose a health risk

For more information visit ISAPPacience.org or follow us on Twitter (OISAPPscience

What are good sources of live dietary microbes (LDM)?

Raw vogetables and truit (unpeeled) and fermenzed mile and vogetables (antreasand after fermestadori) are foods due contain LDM. Examples inclusivyogurt, kim chi, fresh-and mazare-chesses, lenzas, and fresh, uncooked broccali,

- Probledes consumed orally are LDM, alshough LDM may not be necessarily probloxics
- Fermented foods are madewith live microbes, but some processing steps may kill or remove the live microbes See the ISAPPInfographic on fermented foods isappacience.org/for-consumers/infographics/
- Understanding live dietary microbes (LDM) LDM do not need to be specifically characterized or taxonomically identified but could be naturally present in raw or fermented foods
- LDM do not need to have a defined 'dose' but would presumably have to be consumed in high numbers to generate a potential health benefit
- LDM are not required to have scientific evidence directly linking them to conferring specific health benefits

